2alsnsl

|

MICCAI2025 Q”’ O

Medical
[maging,

Robotic,

» W Analytic
&’ |‘ Computing &

(Earning

A

MICCAI

Landmarks Are Alike Yet Distinct: Harnessing Similarity and Individuality
for One-Shot Medical Landmark Detection

Xu He!-?*, Zhen Huang3#, Qingsong Yao>, Xiaoqian Zhou!, and S. Kevin Zhou!-2**
ISchool of Biomedical Engineering, University of Science and Technology of China (USTC)
2Suzhou Institute for Advanced Research, USTC
3School of Computer Science and Technology, USTC
*School of Information Science and Technology, Eastern Institute of Technology (EIT)
*Stanford University

Introduction

Landmark detection in medical images 1s essential for surgical planning,

disease diagnosis, and treatment evaluation.

Although deep learning—based landmark detection under the fully
supervised learning paradigm has shown excellent performance, it relies
heavily on large-scale annotated datasets, which are often difficult to
acquire 1n medical applications.

To alleviate this limitation, recent studies have explored one-shot
landmark detection. However, most existing methods train multiple
landmarks jointly, which often leads to a seesaw phenomenon, where the
improvement of some landmarks degrades the performance of others.

In this work, we address these challenges by:

* Independently training each landmark model, thereby improving
detection accuracy.

 Employing template augmentation, which further enhances robustness
and precision.

* Introducing an adapter mechanism that combines shared parameters
with landmark-specific parameters, enabling an end-to-end model.
This design reduces both computation and memory overhead while
maintaining high-accuracy landmark detection.

e (CC2D-SLA: Train-PL + Infer-PL

 C-ATD: Train-Template + CC2D-SLA
* (C-Adapter: Using adapter in C-ATD
¢ C-F2: C-Adapter + FM-OSD(fine stage)
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* (C-ATD achieves the best accuracy, obtaining 72.02%
SDR(@2mm and 1.79mm MRE, significantly outperforming all
previous state-of-the-art (SOTA) one-shot MLD methods.

* (C-Adapter compresses 19 single-landmark models 1nto one unified
model, with only a slight performance drop compared to C-ATD.

* By combining C-Adapter with FM-OSD’s fine stage (C-F2),
performance improves to 70.48% SDR@2mm, exceeding the previous
SOTA under high-resolution inference.

Table 1: Performance comparison of different methods on the Head [20] dataset.

s Bt MR SDnn

2mm 2.5mm 3mm 4mm
SAM [22] 256 54.11 63.66 70.25 80.84
UOD [29] 243 51.14 62.37 T4.40 86.49
CC2D [24] 204 6246 71.62 80.00 89.45
FM-OSD(coarse) [13] 1 1.93 63.60 75.43 83.03 91.94
FM-OSD (fine) [13] > 1.82 67.35 77.92 84.59 91.92
CC2D-SLA (ours) 19  1.82 69.73 76.69 84.04 92.17
C-ATD(ours) 19  1.79 72.02 78.02 84.72 92.00
C-Adapter(ours) 1 1.96 67.83 75.33 81.89 90.82
C-F2(ours) 3 1.83 70.48 77.35 83.96 91.43

Table 2: Performance of different methods on the 19 landmarks.

[ CC2D FM-OSD C-ATD C-F2
andmark
MRE SDR(2mm) MRE SDR(2mm) MRE SDR(2mm) MRE SDR(2mm)
1 1.35 89.2 1.55 34.0 0.98 97.6 1.26 92.0
2 1.60 74.0 1.49 73.2 1.51 78.0 1.54 73.6
3 1.98 72.4 1.66 68.4 1.37 84.4 1.46 78.4
4 1.93 66.4 2.28 09.6 1.80 70.8 2.00 67.2
5) 1.86 62.8 1.72 65.6 1.54 76.0 1.61 75.2
6 2.50 50.0 2.41 48.4 2.47 49.2 2.43 48.4
7 1.42 81.6 1.05 88.0 0.96 94.0 0.94 93.6
3 1.46 78.4 0.99 91.6 1.10 93.2 1.93 39.6
9 1.08 38.8 0.83 94.8 0.84 96.8 0.84 95.2
10 4.19 20.4 3.23 33.6 3.59 24.8 3.17 37.6
11 2.58 42.8 2.44 52.0 2.89 48.8 2.66 48.8
12 2.60 48.8 1.91 68.0 1.43 86.4 1.50 80.8
13 1.63 70.0 1.60 683.4 1.56 78.4 1.52 79.2
14 1.69 71.2 1.43 30.0 1.54 79.6 1.47 80.0
15 1.73 65.6 1.69 68.8 2.50 50.0 1.89 59.6
16 3.54 26.4 2.61 47.2 2.52 51.2 2.56 48.8
17 1.73 67.6 1.55 74.8 1.24 84.0 1.01 77.6
18 .77 65.6 1.67 67.6 2.00 63.2 1.82 66.4
19 2.44 48.8 2.49 49.6 2.25 62.0 2.75 47.2
Mean  2.04 62.5 1.82 67.4 1.79 72.0 1.83 70.5
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Conclusion

In this paper, we present a progression from exploiting each landmark's
individuality—through single-landmark training—to utilizing inter-
landmark similarity by incorporating adapters into a unified model. This
two-fold approach demonstrates a feasible and effective strategy for
improving MLD accuracy. The proposed C-Adapter represents an 1nitial
endeavor toward jointly learning multiple landmarks via shared and
landmark-specific weights. We believe that continued exploration of this
balance between individuality and similarity will yield more robust,
efficient, and accurate solutions for one-shot MLD.
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