

Landmarks Are Alike Yet Distinct: Harnessing Similarity and Individuality for One-Shot Medical Landmark Detection

Xu He^{1,2*}, Zhen Huang^{3,4}, Qingsong Yao⁵, Xiaoqian Zhou^{1,2}, and S. Kevin Zhou^{1,2 \boxtimes} ¹School of Biomedical Engineering, University of Science and Technology of China (USTC) ²Suzhou Institute for Advanced Research, USTC ³School of Computer Science and Technology, USTC ⁴School of Information Science and Technology, Eastern Institute of Technology (EIT) ⁵Stanford University

Introduction

Landmark detection in medical images is essential for surgical planning, disease diagnosis, and treatment evaluation.

Although deep learning-based landmark detection under the fully supervised learning paradigm has shown excellent performance, it relies heavily on large-scale annotated datasets, which are often difficult to acquire in medical applications.

To alleviate this limitation, recent studies have explored one-shot landmark detection. However, most existing methods train multiple landmarks jointly, which often leads to a seesaw phenomenon, where the improvement of some landmarks degrades the performance of others. In this work, we address these challenges by:

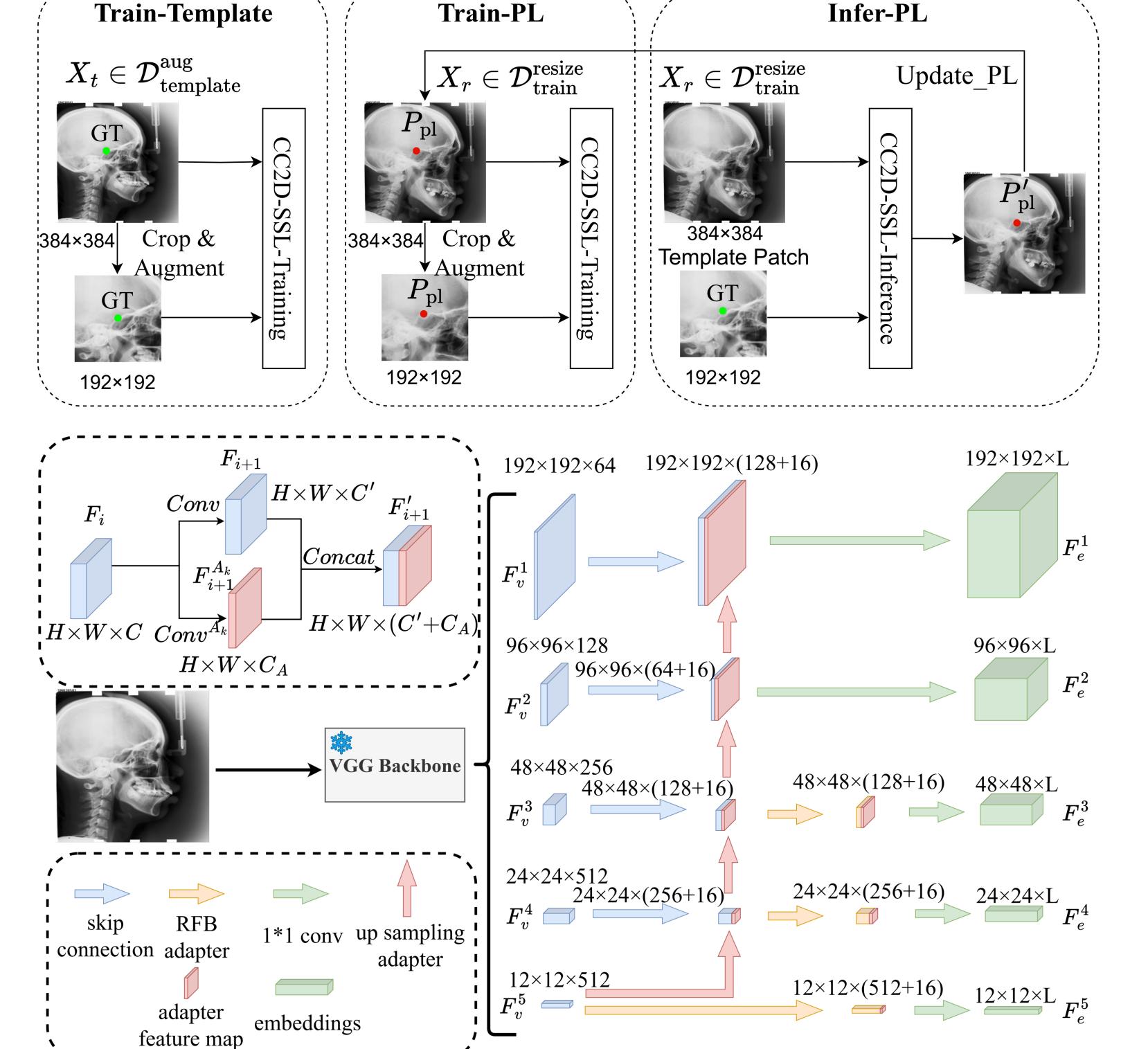
- Independently training each landmark model, thereby improving detection accuracy.
- Employing template augmentation, which further enhances robustness and precision.
- Introducing an adapter mechanism that combines shared parameters with landmark-specific parameters, enabling an end-to-end model. This design reduces both computation and memory overhead while maintaining high-accuracy landmark detection.

Method

CC2D-SLA: Train-PL + Infer-PL

C-ATD: Train-Template + CC2D-SLA C-Adapter: Using adapter in C-ATD

C-F2: C-Adapter + FM-OSD(fine stage)



Results

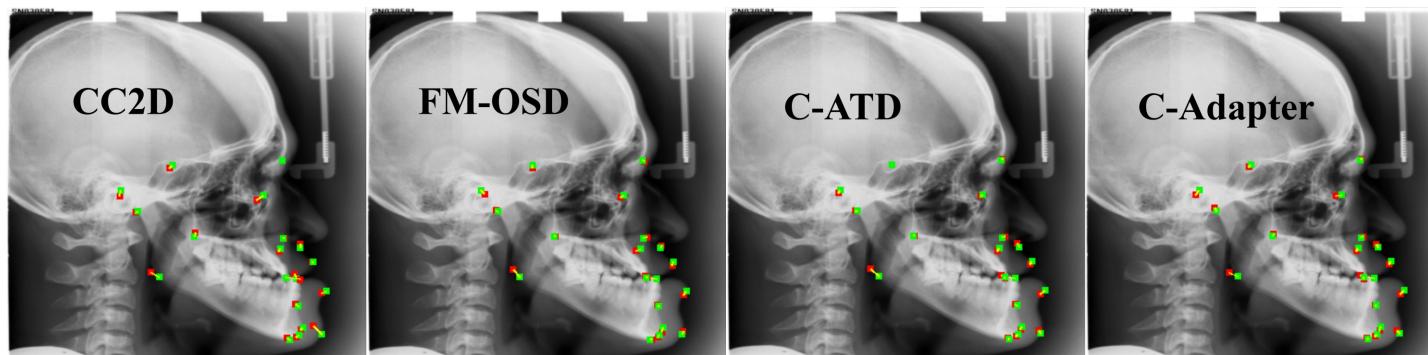
- C-ATD achieves the best accuracy, obtaining 72.02% SDR@2mm and 1.79mm MRE, significantly outperforming all previous state-of-the-art (SOTA) one-shot MLD methods.
- C-Adapter compresses 19 single-landmark models into one unified model, with only a slight performance drop compared to C-ATD.
- By combining C-Adapter with FM-OSD's fine stage (C-F2), performance improves to 70.48% SDR@2mm, exceeding the previous SOTA under high-resolution inference.

Table 1: Performance comparison of different methods on the Head [20] dataset.

Method		$\overline{\mathrm{MRE}(\downarrow)}$	$SDR(\uparrow)(\%)$				
	Count	(mm)	2mm	2.5mm	3mm	$4\mathrm{mm}$	
SAM [22]	1	2.56	54.11	63.66	70.25	80.84	
UOD [29]	1	2.43	51.14	62.37	74.40	86.49	
CC2D [24]	1	2.04	62.46	71.62	80.00	89.45	
FM-OSD(coarse) [13]	1	1.93	63.60	75.43	83.03	91.94	
FM-OSD(fine) [13]	2	1.82	67.35	77.92	84.59	91.92	
CC2D-SLA(ours)	19	1.82	69.73	76.69	84.04	92.17	
C-ATD(ours)	19	1.79	72.02	78.02	84.72	92.00	
C-Adapter(ours)	1	1.96	67.83	75.33	81.89	90.82	
C-F2(ours)	3	1.83	70.48	77.35	83.96	91.43	

Table 2: Performance of different methods on the 19 landmarks.

Landmark	CC2D		FM-OSD		C-ATD		C-F2	
		SDR(2mm)	MRE	SDR(2mm)	$\overline{\text{MRE}}$	$\overline{\mathrm{SDR}(\mathrm{2mm})}$	$\overline{\text{MRE}}$	SDR(2mm
1	1.35	85.2	1.55	84.0	0.98	97.6	1.26	92.0
2	1.60	74.0	1.49	73.2	1.51	78.0	1.54	73.6
3	1.58	72.4	1.66	68.4	1.37	84.4	1.46	78.4
$\frac{4}{5}$	1.93	66.4	2.28	55.6	1.80	70.8	2.00	67.2
5	1.86	62.8	1.72	65.6	1.54	$\boldsymbol{76.0}$	1.61	75.2
6	2.50	50.0	2.41	48.4	2.47	49.2	2.43	48.4
7	1.42	81.6	1.05	88.0	0.96	$\boldsymbol{94.0}$	0.94	93.6
8	1.46	78.4	0.99	91.6	1.10	$\bf 93.2$	1.93	89.6
9	1.08	88.8	0.83	94.8	0.84	$\boldsymbol{96.8}$	0.84	95.2
10	4.19	20.4	3.23	33.6	3.59	24.8	3.17	37.6
11	2.58	42.8	2.44	$\bf 52.0$	2.85	48.8	2.66	48.8
12	2.60	48.8	1.91	68.0	1.43	$\bf 86.4$	1.50	80.8
13	1.63	70.0	1.60	68.4	1.56	78.4	1.52	$\boldsymbol{79.2}$
14	1.69	71.2	1.43	80.0	1.54	79.6	1.47	80.0
15	1.73	65.6	1.69	68.8	2.50	50.0	1.89	59.6
16	3.54	26.4	2.61	47.2	$\bf 2.52$	$\bf 51.2$	2.56	48.8
17	1.73	67.6	1.55	74.8	1.24	84.0	1.51	77.6
18	1.77	65.6	1.67	67.6	2.00	63.2	1.82	66.4
19	2.44	48.8	2.49	49.6	2.25	62.0	2.75	47.2
Mean	2.04	62.5	1.82	67.4	1.79	$\boldsymbol{72.0}$	1.83	70.5



Conclusion

In this paper, we present a progression from exploiting each landmark's individuality—through single-landmark training—to utilizing interlandmark similarity by incorporating adapters into a unified model. This two-fold approach demonstrates a feasible and effective strategy for improving MLD accuracy. The proposed C-Adapter represents an initial endeavor toward jointly learning multiple landmarks via shared and landmark-specific weights. We believe that continued exploration of this balance between individuality and similarity will yield more robust, efficient, and accurate solutions for one-shot MLD.