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Motivation

> CBCT is widely used for dental diagnosis, treatment plan-
ning, and education.

> Repeated scanning is costly, exposes patients to radiation,
and is impractical for simulating alternative scenarios.

> GBCT synthesis offers an efficient way to augment data,
support model training, and facilitate treatment planning.

> Most existing approaches either do not synthesize dental
CBCT volumes or lack fine-grained anatomical control.

Objective

> Introduce a controllable diffusion model for 3D CBCT syn-
thesis with tooth-level conditioning.

> Enable users to specify the presence/absence of individ-
ual teeth while preserving global anatomical coherence.

Dataset

> A curated labeled dataset consisting of 98 CBCT volumes.

> 90 volumes used for training/validation, and 8 unique pa-
tient scans reserved for testing.

> Covers edge cases such as full dentition, partial dentition,
and scans with metal artifacts.

> Standardized to a 256x256x256 voxel size (crop/pad),
preserving the original resolution of ~0.4 mm?.

> Intensities normalized to [1, 1] for stable training of wavelet
diffusion models.

> Binary tooth labels (1-32) according to the Universal Num-
bering System (UNS), excluding supernumerary teeth.

A segmented dental CBCT and UNS-based relabeling

Methods

Tooth augmentation:

e Masking up to 50% of teeth in the conditioning scan for
target reconstruction.

e Conditioning on the original scan while removing teeth
from the target scan.

e Using an image-based inpainting pipeline to fill cavities
with plausible intensities.
e Horizontal flips with relabeling to preserve tooth identity.

Masked L2 loss:

e A soft spatial mask from tooth segmentations empha-
sizes reconstructed regions instead of the background.

e The masked L2 loss is combined with the primary diffu-
sion reconstruction loss:
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Conditional Diffusion Framework
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The proposed model for conditional CBCT synthesis

Wavelet-based diffusion:

e Diffusion in the wavelet domain using a 3D Haar wavelet
decomposition.

e Denoising performed in lower-resolution multiscale latent
decompositions.

e Wavelet representation improves memory efficiency and
preserves structural details compared to voxel space.

Tooth-based conditioning:

e A 32-dimensional binary condition vector encodes tooth
presence or absence across the jaw.

e The vector is embedded, combined with timestep embed-
dings, and incorporated into the denoiser via FiLM.

e FiLM scales and shifts intermediate features according to
tooth configuration, preserving global anatomy.

Tooth Addition Synthesis

o Reconstruction of simulated missing teeth in test scans
with complete dentition.
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Tooth ID

o High similarity between reconstructed/ground-truth teeth.

o Molars and wisdom teeth are less represented in the train-
Ing set and show greater anatomical variability.

Tooth Removal Synthesis

o Demonstrating the model’s ability to synthesize realistic
scans with specific teeth removed.

o Teeth were removed from test scans with full dentition, fol-
lowing common absence patterns in the training set.

o Generated scans were compared to real samples from the
corresponding tooth-absence groups.

Missing Teeth [1,16] [1,16,17,32] [16, 17,18, 19]

FID Score 75.20 74.36 80.03

Full Dental Synthesis

Scan 2: Real vs. Synthetic

o Demonstrating the model’s ability to generate a complete
dentition in held-out test scans with no teeth.

o Achieved an average SSIM of 0.91 and PSNR of 18.35
over the inpainted regions of real and synthetic scans.

Conclusion

> The model synthesizes anatomically coherent CBCTs
while allowing individual teeth to be toggled on or off.

> Generated volumes preserve surrounding bone and tissue
structures, even under varying tooth conditions.

> Visual comparisons confirm strong alignment between
conditioning inputs and generated outputs.

> Fine-grained conditioning makes the results interpretable
and actionable for dental workflows.

Future Directions

> Extend conditioning beyond presence/absence to include
richer properties (restorations, artifacts, root/crown).

> Scale to larger and more diverse patient cohorts to im-
prove generalization.

> Integrate clinically for treatment simulation and preopera-
tive planning.
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